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Abstract. Energy eigenvalues and order parameters are calculated by exact diagonalization for
the isotropic spin-12 XY model on square lattices of up to 6× 6 sites. The finite-size scaling
behaviour is in excellent agreement with the effective Lagrangian predictions of Hasenfratz and
Niedermayer (Hasenfratz P and Niedermayer F 1993Z. Phys.B 92 91). Estimates are obtained
for the bulk ground-state energy per site, the spontaneous magnetization, the spin-wave velocity
and the spin-wave stiffness.

1. Introduction

Recent advances in computer technology have allowed the exact diagonalization of Ising-type
quantum spin systems up to 36 sites in size. Schultzet al (1996), for example, studied the
J1–J2XXZ Heisenberg spin model on square lattices up to 6×6 sites. Our aim in this paper
is to carry out an exact diagonalization study of the spin-1

2 isotropicXY model on the square
lattice, in order to verify that its finite-size scaling behaviour agrees with the predictions of
effective Lagrangian theory (Hasenfratz and Niedermayer 1993), and to estimate the spin-wave
parameters of the model.

A review of the model was given by Betts and Miyashita (1990). The first finite-cell
exact diagonalization studies were performed by Pearson (1977) and Oitmaa and Betts (1978),
and further studies were carried out by Oitmaaet al (1980), and Betts and Kelland (1983).
A renormalization-group analysis was made by Pensonet al (1980), and a variational study
by Suzuki and Miyashita (1978). Monte Carlo simulations were done by Loh, Scalapino and
Grant (1985) and Okabe and Kikuchi (1988), which were followed by a very large and accurate
simulation from Zhang and Runge (1992). More recently, Farnellet al (1997) have used a
coupled-cluster method to treat the model.

Spin-wave theory was originally thought to be unsatisfactory for this model (Mattis 1981),
but Gomez-Santos and Joannopoulos (1987) showed that by a judicious choice of the quantized
spin axis one can obtain a good theoretical fit to the model. The spin-wave treatment was
extended to second order by Hameret al (1991), who also presented a series analysis based
on an expansion about the Ising limit.
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These studies have shown beyond doubt that there is long-range order in the ground state
of the isotropic model, as first predicted by Oitmaa and Betts (1978). The existence of long-
range order has since been rigorously proven by Kennedyet al (1988), and Kubo and Kishi
(1988). This implies that the O(2) rotational symmetry of the original Hamiltonian must be
spontaneously broken in the ground state, giving rise to massless Goldstone bosons (the spin
waves or ‘magnons’), according to field theory. Hasenfratz and Niedermayer (1993) have
presented an effective Lagrangian treatment of the Goldstone boson degrees of freedom which
covers this situation, and predicts the long-range or finite-size scaling behaviour of the model,
as well as its behaviour at low temperatures and small magnetic fields. The parameters of the
effective Lagrangian in leading order are the spin-wave stiffnessρs , the spin-wave velocityv,
and the spontaneous magnetization6.

In this paper we diagonalize the model exactly on square lattices up to 6× 6 sites in
size, using methods outlined in section 2. The results are presented in section 3, and turn out
to match the predictions of effective Lagrangian theory very closely. Fitting the data to the
predicted finite-size scaling forms, we obtain estimates of the bulk ground-state energy per
site, and the parametersρs , v and6. It would be interesting to see how well these results could
be predicted by an extended spin-wave calculation.

2. Method

The isotropic spin-12 XY ferromagnet on the square lattice has the Hamiltonian

H = − 1
2

∑
〈ij〉
(σ xi σ

x
j + σyi σ

y

j ) (2.1)

= −
∑
〈ij〉
(σ +
i σ
−
j + σ−i σ

+
j ) (2.2)

where the sum〈ij〉 runs over nearest-neighbour pairs on the lattice, and theσ matrices are
the usual Pauli spin operators acting on a 2-state spin-variable at each site. We shall employ a
representation in which theσ zi are diagonal. The total magnetization operator is

M =
∑
i

Si = 1
2

∑
i

σi . (2.3)

The ground state (for evenN ) lies in the sector withMz = 0.
We shall measure the long-range order of the system in terms of the quantity

fLRO = 4
〈M2〉
N2
− 2

N
(2.4)

following Fujiki and Betts (1986), where〈M2〉 is the ground-state expectation value ofM2,
andN = L2 is the total number of sites.

The isotropic system possesses a spontaneously broken O(2) rotational symmetry, so that
according to effective Lagrangian theory (Hasenfratz and Niedermayer 1993) the ground-state
energy per site for a finite system of sizeL with periodic boundary conditions should scale as

ε0(L) = ε0(∞)− α1v

2L3
+ O(L−5) (2.5)

where the geometrical ‘shape coefficient’α1 = 1.4377. . . for the square lattice, andv is the
spin-wave velocity. The mass gaps should scale as

Ej − E0 = j2v2

2ρsL2
+ O(L−4, j4) (2.6)

for a state with spinj = Mz, whereρs is the spin-wave stiffness or helicity modulus.
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Exact diagonalizations have been carried out forL × L lattices,L = 1, . . . ,6. The
methods employed are fairly standard, for the most part, and will not be described in detail
here. First, a list of allowed basis states in the given sector was prepared, using the ‘sub-lattice
coding’ technique of Lin (1990). This efficient technique produces a sorted list of states,
requiring only one integer word of storage per state. Since only the zero-momentum ground
state is considered here, the states were ‘symmetrized’: that is, all copies of a given state under
translations, reflections and rotations were represented by a single state. Thus for the 6× 6
lattice in theMz = 0 sector, the total number of ‘unsymmetrized’ states is36C18 = 9× 109,
whereas under symmetrization this is reduced by a factor of approximately 288, down to
31 566 122.

Next, the Hamiltonian matrix elements are generated, by applying the spin–flip operators
of equation (2.2) to each initial state, symmetrizing the resulting final state, and looking it up in
the master file. The elements were grouped into blocks, each of which acts between small sub-
sets of the initial and final state vectors, to avoid ‘thrashing’ during the matrix multiplications.
Within each sub-set, the initial and final addresses can be fitted into a half-integer, so that the
matrix elements occupied 5 Gbyte of storage over all.

Finally, the lowest eigenvalue and eigenvector of the Hamiltonian were found, using
the conjugate gradient method. Nightingaleet al (1993) showed that the conjugate gradient
method converges faster than the Lanczos method for large problems such as this. Once the
ground-state eigenvector is known, it is a simple extension to compute the long-range order
expectation valuefLRO .

3. Results

Table 1 gives a list of the ground-state energies as a function of lattice sizeL and total
magnetizationj = Mz. This list agrees with a previous finite-cell calculation (Betts and
Kelland 1983) for the caseL = 4,Mz = 0. Note that we have not restricted ourselves here to
the casesN even, orMz = 0.

Figure 1 graphs the results as functions ofj for fixed values ofL. It can be seen that the
behaviour is almost linear inj2, showing that the leading behaviour (2.6) sets in very quickly.
A polynomial fit in powers ofj2 to the ground-state energy per site:

ε0(L, j) =
∑
n

an(L)(j
2)n (3.1)

using powers sufficient to fit all the available data exactly at eachL, gives coefficients
a0(L), a1(L) as listed in table 2.

Figure 2 graphs the leading coefficienta0(L), i.e. the ‘j = 0 value’, as a function of
1/L3. Again, the graph is almost linear, so that the leading behaviour (2.5) predicted by
effective Lagrangian theory is very quickly established. The graph also appears quite smooth,
even though only the even values ofL correspond to actual physical eigenvalues. Closer
examination shows that there is in fact a small alternation in the coefficients. A fit to the
coefficients at higherL of the form

a0(L) = b0 +
b1

L3
+
b2

L5
+
(−1)Lb3

L6
(3.2)

leads us to the estimates

b0 = −1.0976(2) (3.3)

b1 = −1.64(7) (3.4)
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Table 1. Ground-state energy per site as a function of lattice sizeL and magnetizationj = Mz.

L 2j E0/N

2 0 −1.414 213 562 373
2 −1.000 000 000 000
4 0.000 000 000 000

3 1 −1.149 665 828 185
3 −1.030 132 700 924
5 −0.791 456 180 624
7 −0.444 444 444 444
9 0.000 000 000 000

4 0 −1.124 972 697 436
2 −1.105 869 011 797
4 −1.049 258 814 766
6 −0.956 275 532 993
8 −0.828 230 582 209

10 −0.666 542 044 881
12 −0.473 097 428 529
14 −0.250 000 000 000
16 0.000 000 000 000

5 1 −1.109 271 963 809
3 −1.093 876 929 636
5 −1.063 227 022 543
7 −1.017 564 832 954
9 −0.957 206 282 978

11 −0.882 514 235 871
13 −0.793 891 032 781
15 −0.691 782 222 570
17 −0.576 692 344 169
19 −0.449 215 517 801
21 −0.310 054 774 839
23 −0.160 000 000 000
25 0.000 000 000 000

6 0 −1.105 388 167 527
2 −1.101 684 925 406

Table 2. Coefficientsa0(L), a1(L) as functions of lattice sizeL.

L a0(L) a1(L)

1 −2.000 000 000 000 —
2 −1.414 213 562 373 0.434 433 619 6329
3 −1.164 535 184 209 0.059 429 621 3383
4 −1.124 972 697 436 0.019 184 299 7462
5 −1.111 199 939 587 0.007 713 569 3649
6 −1.105 388 167 527 [0.003 703 242 1210]

which from (2.5) correspond to

ε0(∞) = −1.0976(2) (3.5)

v = 2.28(10). (3.6)

This result for the ground-state energy per site is compared with other estimates in table 3.
It is compatible with the remarkably precise Monte Carlo estimate of Zhang and Runge (1992),
but an order of magnitude less accurate. The spin-wave velocityv has not been estimated
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Figure 1. Graph of the ground-state energy per siteε0(L, j) as a function of spinj2 for lattice
sizesL = 4, 5, 6.

before, as far as we are aware.

Table 3. Comparison of some numerical estimates for the ground-state energy per siteε0(∞) and
the long-range order parameter6 for theS = 1

2 isotropicXY model on the square lattice.

ε0(∞) 6 Method Reference

−1.08(1) 0.47(1) Finite-cell Oitmaa and Betts (1978)
−1.086(4) — Monte Carlo Lohet al (1985)
−1.074 0.48 Variational Suzuki and Miyashita (1978)
−1.098(1) — Monte Carlo Okabe and Kikuchi (1988)
−1.097 66(6) 0.435 48(3) Series Hameret al (1991)
−1.0954 0.438 Spin-wave Hameret al (1991)
−1.097 66(2) 0.441(5) Monte Carlo Zhang and Runge (1992)
−1.097 84 0.435 Coupled-cluster Farnellet al (1997)
−1.097 6(2) 0.44(1) Finite-lattice This work

Figure 3 graphs the coefficienta1(L) as a function of 1/L4, and again the behaviour is
almost linear, as predicted by equation (2.6) (recall that by working with the energy per site
we divide by a further factor ofN = L2). A fit to the coefficients at higherL of the form

a1(L) = c0

L4
+
c1

L6
+
(−1)Lc2

L6
(3.7)

leads to the estimate

c0 = 4.83(5). (3.8)
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Figure 2. The coefficienta0(L) graphed against 1/L3, whereL is the lattice size.

Note thata1(6)was not included in this fit, because its value is uncertain. Using (2.6) and
(3.6), this corresponds to a spin-wave stiffness for this model

ρs = 0.54(3). (3.9)

This also has not been estimated before, as far as we are aware.

Table 4. Ground-state expectation valuefLRO as a function of lattice sizeL.

L fLRO

2 0.957 106 781 1865
3 0.955 161 594 8951
4 0.937 531 451 8101
5 0.913 629 699 1358
6 0.893 603 736 9844

Table 4 lists the values calculated for the ground-state expectation valuefLRO . For even
L, these are calculated for thej = 0 state. For oddL, we have listed values for

fLRO =
〈∑
i,j

(Sxi S
x
j + Syi S

y

j )

〉
= 1

2

〈∑
i,j

(σ +
i σ
−
j + σ−i σ

+
j )

〉
(3.10)

for thej = 1
2 state. There is no strong justification for assuming that these values will vary

smoothly with L; but in fact they appear to do so, as shown in figure 4. A fit of the form

fLRO(L) =
∑
n

dn

Ln
(3.11)
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Figure 3. The coefficienta1(L) graphed against 1/L4.

gives an estimate for the bulk limit

fLRO(∞) = d0 = 0.77(3). (3.12)

Quite a large extrapolation is involved with this estimate, as seen in figure 4, and it
depends heavily on the assumption of the functional form (3.11) (Betts and Miyashita 1990).
Fortuitously perhaps, the result agrees very well with the Monte Carlo estimate of Zhang and
Runge (1992)—see table 3, wherefLRO = (26)2.

4. Conclusions

We have calculated the energy eigenvalues and long-range order parameter by exact
diagonalization for square lattices with periodic boundary conditions up to size 6× 6. The
major limitation on such calculations nowadays is data storage: fast disk access to 5 Gbyte of
data was required in this case.

The finite-size scaling behaviour of the energy eigenvalues agrees extremely well with the
effective field theory predictions of Hasenfratz and Niedermayer (1993). Extrapolating to the
bulk limit, estimates were obtained for the bulk ground-state energy per site and the effective
Lagrangian parameters, consisting of the spin-wave velocityv, the spin-wave stiffnessρs and
the spontaneous magnetization6. The parametersv andρs have not previously been estimated,
as far as we know.

Our results forε0(∞)and6 are in excellent agreement with series and spin-wave estimates
(Hameret al 1991), and are more accurate than previous finite-cell estimates. They are not
able to rival the Monte Carlo estimates of Zhang and Runge (1992) in precision, however. The
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Figure 4. The long-range order parameterfLRO graphed against 1/L.

sequence of finite-lattice estimates, including both odd and even lattices, is not quite smooth
enough to allow a really precise extrapolation to the bulk limit in this instance.

The ‘spin deviation’ or renormalization of the long-range order due to quantum fluctuations
is even smaller in this model than in theXXZ Heisenberg antiferromagnet, and so one expects
that spin-wave theory should converge even more quickly. It might well be worthwhile to
extend the spin-wave calculations (Hameret al 1991) to higher order, and use both spin-wave
and series techniques to estimateρs andv for this model. We hope to address these questions
in future work.
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